The classification of flash visual evoked potential based on deep learning

Author:

Liang Na,Wang Chengliang,Li Shiying,Xie Xin,Lin Jun,Zhong Wen

Abstract

Abstract Background Visual electrophysiology is an objective visual function examination widely used in clinical work and medical identification that can objectively evaluate visual function and locate lesions according to waveform changes. However, in visual electrophysiological examinations, the flash visual evoked potential (FVEP) varies greatly among individuals, resulting in different waveforms in different normal subjects. Moreover, most of the FVEP wave labelling is performed automatically by a machine, and manually corrected by professional clinical technicians. These labels may have biases due to the individual variations in subjects, incomplete clinical examination data, different professional skills, personal habits and other factors. Through the retrospective study of big data, an artificial intelligence algorithm is used to maintain high generalization abilities in complex situations and improve the accuracy of prescreening. Methods A novel multi-input neural network based on convolution and confidence branching (MCAC-Net) for retinitis pigmentosa RP recognition and out-of-distribution detection is proposed. The MCAC-Net with global and local feature extraction is designed for the FVEP signal that has different local and global information, and a confidence branch is added for out-of-distribution sample detection. For the proposed manual features,a new input layer is added. Results The model is verified by a clinically collected FVEP dataset, and an accuracy of 90.7% is achieved in the classification task and 93.3% in the out-of-distribution detection task. Conclusion We built a deep learning-based FVEP classification algorithm that promises to be an excellent tool for screening RP diseases by using FVEP signals.

Funder

The research was supported by the project of Chongqing Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3