Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN

Author:

Ma Mengnan,Cheng Yinlin,Wei Xiaoyan,Chen Ziyi,Zhou YiORCID

Abstract

Abstract Background Epilepsy is one of the diseases of the nervous system, which has a large population in the world. Traditional diagnosis methods mostly depended on the professional neurologists’ reading of the electroencephalogram (EEG), which was time-consuming, inefficient, and subjective. In recent years, automatic epilepsy diagnosis of EEG by deep learning had attracted more and more attention. But the potential of deep neural networks in seizure detection had not been fully developed. Methods In this article, we used a one-dimensional convolutional neural network (1-D CNN) to replace the residual network architecture’s traditional convolutional neural network (CNN). Moreover, we combined the Independent recurrent neural network (indRNN) and CNN to form a new residual network architecture-independent convolutional recurrent neural network (RCNN). Our model can achieve an automatic diagnosis of epilepsy EEG. Firstly, the important features of EEG were learned by using the residual network architecture of 1-D CNN. Then the relationship between the sequences were learned by using the recurrent neural network. Finally, the model outputted the classification results. Results On the small sample data sets of Bonn University, our method was superior to the baseline methods and achieved 100% classification accuracy, 100% classification specificity. For the noisy real-world data, our method also exhibited powerful performance. Conclusion The model we proposed can quickly and accurately identify the different periods of EEG in an ideal condition and the real-world condition. The model can provide automatic detection capabilities for clinical epilepsy EEG detection. We hoped to provide a positive significance for the prediction of epileptic seizures EEG.

Funder

National Key Research and Development Program of China

111 Project

Key Research and Development Program of Guangdong

National Natural Science Foundation of China

Joint Foundation for the NSFC and Guangdong Science Center for Big Data

Science and Technology Program of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3