A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants

Author:

Zou Baiming,Mi Xinlei,Stone Elizabeth,Zou Fei

Abstract

Abstract Objective We aimed to develop a robust framework to model the complex association between clinical features and traumatic brain injury (TBI) risk in children under age two, and identify significant features to derive clinical decision rules for triage decisions. Methods In this retrospective study, four frequently used machine learning models, i.e., support vector machine (SVM), random forest (RF), deep neural network (DNN), and XGBoost (XGB), were compared to identify significant clinical features from 24 input features associated with the TBI risk in children under age two under the permutation feature importance test (PermFIT) framework by using the publicly available data set from the Pediatric Emergency Care Applied Research Network (PECARN) study. The prediction accuracy was determined by comparing the predicted TBI status with the computed tomography (CT) scan results since CT scan is the gold standard for diagnosing TBI. Results At a significance level of $$p = 0.05$$ p = 0.05 , DNN, RF, XGB, and SVM identified 9, 1, 2,  and 4 significant features, respectively. In a comparison of accuracy (Accuracy), the area under the curve (AUC), and the precision-recall area under the curve (PR-AUC), the permutation feature importance test for DNN model was the most powerful framework for identifying significant features and outperformed other methods, i.e., RF, XGB, and SVM, with Accuracy, AUC, and PR-AUC as 0.915, 0.794, and 0.974, respectively. Conclusion These results indicate that the PermFIT-DNN framework robustly identifies significant clinical features associated with TBI status and improves prediction performance. The findings could be used to inform the development of clinical decision tools designed to inform triage decisions.

Funder

Junior Faculty Development Award of UNC

NIH/NLM

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3