Predicting the amputation risk for patients with diabetic foot ulceration – a Bayesian decision support tool

Author:

Hüsers Jens,Hafer Guido,Heggemann Jan,Wiemeyer Stefan,John Swen Malte,Hübner UrsulaORCID

Abstract

Abstract Background Diabetes mellitus is a major global health issue with a growing prevalence. In this context, the number of diabetic complications is also on the rise, such as diabetic foot ulcers (DFU), which are closely linked to the risk of lower extremity amputation (LEA). Statistical prediction tools may support clinicians to initiate early tertiary LEA prevention for DFU patients. Thus, we designed Bayesian prediction models, as they produce transparent decision rules, quantify uncertainty intuitively and acknowledge prior available scientific knowledge. Method A logistic regression using observational collected according to the standardised PEDIS classification was utilised to compute the six-month amputation risk of DFU patients for two types of LEA: 1.) any-amputation and 2.) major-amputation. Being able to incorporate information which is available before the analysis, the Bayesian models were fitted following a twofold strategy. First, the designed prediction models waive the available information and, second, we incorporated the a priori available scientific knowledge into our models. Then, we evaluated each model with respect to the effect of the predictors and validity of the models. Next, we compared the performance of both models with respect to the incorporation of prior knowledge. Results This study included 237 patients. The mean age was 65.9 (SD 12.3), and 83.5% were male. Concerning the outcome, 31.6% underwent any- and 12.2% underwent a major-amputation procedure. The risk factors of perfusion, ulcer extent and depth revealed an impact on the outcomes, whereas the infection status and sensation did not. The major-amputation model using prior information outperformed the uninformed counterpart (AUC 0.765 vs AUC 0.790, Cohen’s d 2.21). In contrast, the models predicting any-amputation performed similarly (0.793 vs 0.790, Cohen’s d 0.22). Conclusions Both of the Bayesian amputation risk models showed acceptable prognostic values, and the major-amputation model benefitted from incorporating a priori information from a previous study. Thus, PEDIS serves as a valid foundation for a clinical decision support tool for the prediction of the amputation risk in DFU patients. Furthermore, we demonstrated the use of the available prior scientific information within a Bayesian framework to establish chains of knowledge.

Funder

Niedersächsische Ministerium für Wissenschaft und Kultur

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3