The prediction of hospital length of stay using unstructured data

Author:

Chrusciel Jan,Girardon François,Roquette Lucien,Laplanche David,Duclos Antoine,Sanchez StéphaneORCID

Abstract

Abstract Objective This study aimed to assess the performance improvement for machine learning-based hospital length of stay (LOS) predictions when clinical signs written in text are accounted for and compared to the traditional approach of solely considering structured information such as age, gender and major ICD diagnosis. Methods This study was an observational retrospective cohort study and analyzed patient stays admitted between 1 January to 24 September 2019. For each stay, a patient was admitted through the Emergency Department (ED) and stayed for more than two days in the subsequent service. LOS was predicted using two random forest models. The first included unstructured text extracted from electronic health records (EHRs). A word-embedding algorithm based on UMLS terminology with exact matching restricted to patient-centric affirmation sentences was used to assess the EHR data. The second model was primarily based on structured data in the form of diagnoses coded from the International Classification of Disease 10th Edition (ICD-10) and triage codes (CCMU/GEMSA classifications). Variables common to both models were: age, gender, zip/postal code, LOS in the ED, recent visit flag, assigned patient ward after the ED stay and short-term ED activity. Models were trained on 80% of data and performance was evaluated by accuracy on the remaining 20% test data. Results The model using unstructured data had a 75.0% accuracy compared to 74.1% for the model containing structured data. The two models produced a similar prediction in 86.6% of cases. In a secondary analysis restricted to intensive care patients, the accuracy of both models was also similar (76.3% vs 75.0%). Conclusions LOS prediction using unstructured data had similar accuracy to using structured data and can be considered of use to accurately model LOS.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3