A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma

Author:

Gao Hongli,Xing Fei

Abstract

Abstract Background Colon cancer is the foremost reason of cancer-related mortality worldwide. Colon adenocarcinoma constitutes 90% of colon cancer, and most patients with colon adenocarcinoma (COAD) are identified until advanced stage. With the emergence of an increasing number of novel pathogenic mechanisms and treatments, the role of mitochondria in the development of cancer, has been studied and reported with increasing frequency. Methods We systematically analyzed the effect of mitochondria-related genes in COAD utilizing RNA sequencing dataset from The Cancer Genome Atlas database and 1613 mitochondrial function-related genes from MitoMiner database. Our approach consisted of differentially expressed gene, gene set enrichment analysis, gene ontology terminology, Kyoto Encyclopedia of Genes and Genomes, independent prognostic analysis, univariate and multivariate analysis, Kaplan–Meier survival analysis, immune microenvironment correlation analysis, and Cox regression analysis. Results Consequently, 8 genes were identified to construct 8 mitochondrial-related gene model by applying Cox regression analysis, CDC25C, KCNJ11, NOL3, P4HA1, QSOX2, Trap1, DNAJC28, and ATCAY. Meanwhile, we assessed the connection between this model and clinical parameters or immune microenvironment. Risk score was an independent predictor for COAD patients’ survival with an AUC of 0.687, 0.752 and 0.762 at 1-, 3- and 5-year in nomogram, respectively. The group with the highest risk score had the lowest survival rate and the worst clinical stages. Additionally, its predictive capacity was validated in GSE39582 cohort. Conclusion In summary, we established a prognostic pattern of mitochondrial-related genes, which can predict overall survival in COAD, which may enable a more optimized approach for the clinical treatment and scientific study of COAD. This gene signature model has the potential to improve prognosis and treatment for COAD patients in the future, and to be widely implemented in clinical settings. The utilization of this mitochondrial-related gene signature model may be benefit in the treatments and medical decision-making of COAD.

Funder

National Natural Science Foundation of China

345 Talent Project of Shengjing hospital of China Medical University

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3