A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests

Author:

Momeni Mehri,Afkanpour Marziyeh,Rakhshani Saleh,Mehrabian Amin,Tabesh Hamed

Abstract

Abstract Background The pharmaceutical industry is continually striving to innovate drug development and formulation processes. Orally disintegrating tablets (ODTs) have gained popularity due to their quick release and patient-friendly characteristics. The choice of excipients in tablet formulations plays a critical role in ensuring product quality, highlighting its importance in tablet creation. The traditional trial-and-error approach to this process is both expensive and time-intensive. To tackle these obstacles, we introduce a fresh approach leveraging machine learning and deep learning methods to automate and enhance pre-formulation drug design. Methods We collected a comprehensive dataset of 1983 formulations, including excipient names, quantities, active ingredient details, and various physicochemical attributes. Our study focused on predicting two critical control test parameters: tablet disintegration time and hardness. We compared a range of models like deep learning, artificial neural networks, support vector machines, decision trees, multiple linear regression, and random forests. Results A 12-layer deep neural network, as a form of deep learning, surpassed alternative techniques by achieving 73% accuracy for disintegration time and 99% for tablet hardness. This success underscores its efficacy in predicting complex pharmaceutical factors. Such an approach streamlines the drug formulation process, reducing iterations and material consumption. Conclusions Our findings highlight the deep learning potential in pharmaceutical formulations, particularly for tablet hardness prediction. Future work should focus on enlarging the dataset to improve model effectiveness and extend its application in pharmaceutical product development and assessment.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Bhowmik D, Chiranjib B, Krishnakanth P, Chandira RM. Fast dissolving tablet: an overview. J Chem Pharm Res. 2009;1(1):163–77.

2. Valleri M, Mura P, Maestrelli F, Cirri M, Ballerini R. Development and evaluation of glyburide fast dissolving tablets using solid dispersion technique. Drug Dev Ind Pharm. 2004;30(5):525–34.

3. Allen L, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins; 2013.

4. Bandelin FJ. Compressed tablets by wet granulation. Pharm Dosage Forms: Tablets. 1989;1:131–93.

5. Dash A, Singh S. Pharmaceutics: basic principles and application to pharmacy practice. Academic; 2013.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3