Dealing with missing data in laboratory test results used as a baseline covariate: results of multi-hospital cohort studies utilizing a database system contributing to MID-NET® in Japan

Author:

Komamine MakiORCID,Fujimura Yoshiaki,Omiya Masatomo,Sato Tosiya

Abstract

Abstract Background To evaluate missing data methods applied to laboratory test results used for confounding adjustment, utilizing data from 10 MID-NET®-collaborative hospitals. Methods Using two scenarios, five methods dealing with missing laboratory test results were applied, including three missing data methods (single regression imputation (SRI), multiple imputation (MI), and inverse probability weighted (IPW) method). We compared the point estimates of adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) between the five methods. Hospital variability in missing data was considered using the hospital-specific approach and overall approach. Confounding adjustment methods were propensity score (PS) weighting, PS matching, and regression adjustment. Results In Scenario 1, the risk of diabetes due to second-generation antipsychotics was compared with that due to first-generation antipsychotics. The aHR adjusted by PS weighting using SRI, MI, and IPW by the hospital-specific-approach was 0.61 [95%CI, 0.39–0.96], 0.63 [95%CI, 0.42–0.93], and 0.76 [95%CI, 0.46–1.25], respectively. In Scenario 2, the risk of liver injuries due to rosuvastatin was compared with that due to atorvastatin. Although PS matching largely contributed to differences in aHRs between methods, PS weighting provided no substantial difference in point estimates of aHRs between SRI and MI, similar to Scenario 1. The results of SRI and MI in both scenarios showed no considerable changes, even upon changing the approaches considering hospital variations. Conclusions SRI and MI provide similar point estimates of aHR. Two approaches considering hospital variations did not markedly affect the results. Adjustment by PS matching should be used carefully.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3