Abstract
Abstract
Background
With the global spread of COVID-19, detecting high-risk countries/regions timely and dynamically is essential; therefore, we sought to develop automatic, quantitative and scalable analysis methods to observe and estimate COVID-19 spread worldwide and further generate reliable and timely decision-making support for public health management using a comprehensive modeling method based on multiple mathematical models.
Methods
We collected global COVID-19 epidemic data reported from January 23 to September 30, 2020, to observe and estimate its possible spread trends. Countries were divided into three outbreak levels: high, middle, and low. Trends analysis was performed by calculating the growth rate, and then country grouping was implemented using group-based trajectory modeling on the three levels. Individual countries from each group were also chosen to further disclose the outbreak situations using two predicting models: the logistic growth model and the SEIR model.
Results
All 187 observed countries' trajectory subgroups were identified using two grouping strategies: with and without population consideration. By measuring epidemic trends and predicting the epidemic size and peak of individual countries, our study found that the logistic growth model generally estimated a smaller epidemic size than the SEIR model. According to SEIR modeling, confirmed cases in each country would take an average of 9–12 months to reach the outbreak peak from the day the first case occurred. Additionally, the average number of cases at the peak time will reach approximately 10–20% of the countries’ populations, and the countries with high trends and a high predicted size must pay special attention and implement public health interventions in a timely manner.
Conclusions
We demonstrated comprehensive observations and predictions of the COVID-19 outbreak in 187 countries using a comprehensive modeling method. The methods proposed in this study can measure COVID-19 development from multiple perspectives and are generalizable to other epidemic diseases. Furthermore, the methods also provide reliable and timely decision-making support for public health management.
Funder
Emergency project of Health Information and Healthcare Big Data Society of China
CAMS Innovation Fund for Medical Sciences
National Key R&D Program of China
CMB Open Competition Program
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference26 articles.
1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020 [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020].
2. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214.
3. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395:689.
4. Shen M, Peng Z, Xiao Y, Zhang L. Modeling the epidemic trend of the 2019 novel coronavirus outbreak in China. The Innovation. 2020;1(3).
5. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27:taaa021.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献