Procedure code overutilization detection from healthcare claims using unsupervised deep learning methods

Author:

Suesserman Michael,Gorny Samantha,Lasaga Daniel,Helms John,Olson Dan,Bowen Edward,Bhattacharya Sanmitra

Abstract

Abstract Background Fraud, Waste, and Abuse (FWA) in medical claims have a negative impact on the quality and cost of healthcare. A major component of FWA in claims is procedure code overutilization, where one or more prescribed procedures may not be relevant to a given diagnosis and patient profile, resulting in unnecessary and unwarranted treatments and medical payments. This study aims to identify such unwarranted procedures from millions of healthcare claims. In the absence of labeled examples of unwarranted procedures, the study focused on the application of unsupervised machine learning techniques. Methods Experiments were conducted with deep autoencoders to find claims containing anomalous procedure codes indicative of FWA, and were compared against a baseline density-based clustering model. Diagnoses, procedures, and demographic data associated with healthcare claims were used as features for the models. A dataset of one hundred thousand claims sampled from a larger claims database is used to initially train and tune the models, followed by experimentations on a dataset with thirty-three million claims. Experimental results show that the autoencoder model, when trained with a novel feature-weighted loss function, outperforms the density-based clustering approach in finding potential outlier procedure codes. Results Given the unsupervised nature of our experiments, model performance was evaluated using a synthetic outlier test dataset, and a manually annotated outlier test dataset. Precision, recall and F1-scores on the synthetic outlier test dataset for the autoencoder model trained on one hundred thousand claims were 0.87, 1.0 and 0.93, respectively, while the results for these metrics on the manually annotated outlier test dataset were 0.36, 0.86 and 0.51, respectively. The model performance on the manually annotated outlier test dataset improved further when trained on the larger thirty-three million claims dataset with precision, recall and F1-scores of 0.48, 0.90 and 0.63, respectively. Conclusions This study demonstrates the feasibility of leveraging unsupervised, deep-learning methods to identify potential procedure overutilization from healthcare claims.

Funder

Deloitte

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference42 articles.

1. National Health Expenditure Accounts (NHEA) Historical Data. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical.

2. National Health Expenditure Accounts (NHEA) Projections. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsProjected.

3. National Health Care Anti-Fraud Association (NHCAA). The Challenge of Health Care Fraud. https://www.nhcaa.org/tools-insights/about-health-care-fraud/the-challenge-of-health-care-fraud/.

4. Rosenbaum S, Lopez N, Stifler S. Health insurance fraud: an overview. Washington: Department of Health Policy, School of Public Health and Health Services, The George Washington University; 2009.

5. Kalb PE. Health care fraud and abuse. JAMA. 1999;282:1163.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3