Descriptive forest: experiments on a novel tree-structure-generalization method for describing cardiovascular diseases

Author:

Liewlom Peera

Abstract

Abstract Background A decision tree is a crucial tool for describing the factors related to cardiovascular disease (CVD) risk and for predicting and explaining it for patients. Notably, the decision tree must be simplified because patients may have different primary topics or factors related to the CVD risk. Many decision trees can describe the data collected from multiple environmental heart disease risk datasets or a forest, where each tree describes the CVD risk for each primary topic. Methods We demonstrate the presence of trees, or a forest, using an integrated CVD dataset obtained from multiple datasets. Moreover, we apply a novel method to an association-rule tree to discover each primary topic hidden within a dataset. To generalize the tree structure for descriptive tasks, each primary topic is a boundary node acting as a root node of a C4.5 tree with the least prodigality for the tree structure (PTS). All trees are assigned to a descriptive forest describing the CVD risks in a dataset. A descriptive forest is used to describe each CVD patient’s primary risk topics and related factors. We describe eight primary topics in a descriptive forest acquired from 918 records of a heart failure–prediction dataset with 11 features obtained from five datasets. We apply the proposed method to 253,680 records with 22 features from imbalanced classes of a heart disease health–indicators dataset. Results The usability of the descriptive forest is demonstrated by a comparative study (on qualitative and quantitative tasks of the CVD-risk explanation) with a C4.5 tree generated from the same dataset but with the least PTS. The qualitative descriptive task confirms that compared to a single C4.5 tree, the descriptive forest is more flexible and can better describe the CVD risk, whereas the quantitative descriptive task confirms that it achieved higher coverage (recall) and correctness (accuracy and precision) and provided more detailed explanations. Additionally, for these tasks, the descriptive forest still outperforms the C4.5 tree. To reduce the problem of imbalanced classes, the ratio of classes in each subdataset generating each tree is investigated. Conclusion The results provide confidence for using the descriptive forest.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ensemble-based ML Model to Predict Cardiac Disease;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

2. System for Predicting Heart Disease using Sophisticated Machine Learning Techniques;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3