Missing lateral relationships in top-level concepts of an ontology

Author:

Zheng LingORCID,Chen Yan,Min Hua,Hildebrand P. Lloyd,Liu Hao,Halper Michael,Geller James,de Coronado Sherri,Perl Yehoshua

Abstract

Abstract Background Ontologies house various kinds of domain knowledge in formal structures, primarily in the form of concepts and the associative relationships between them. Ontologies have become integral components of many health information processing environments. Hence, quality assurance of the conceptual content of any ontology is critical. Relationships are foundational to the definition of concepts. Missing relationship errors (i.e., unintended omissions of important definitional relationships) can have a deleterious effect on the quality of an ontology. An abstraction network is a structure that overlays an ontology and provides an alternate, summarization view of its contents. One kind of abstraction network is called an area taxonomy, and a variation of it is called a subtaxonomy. A methodology based on these taxonomies for more readily finding missing relationship errors is explored. Methods The area taxonomy and the subtaxonomy are deployed to help reveal concepts that have a high likelihood of exhibiting missing relationship errors. A specific top-level grouping unit found within the area taxonomy and subtaxonomy, when deemed to be anomalous, is used as an indicator that missing relationship errors are likely to be found among certain concepts. Two hypotheses pertaining to the effectiveness of our Quality Assurance approach are studied. Results Our Quality Assurance methodology was applied to the Biological Process hierarchy of the National Cancer Institute thesaurus (NCIt) and SNOMED CT’s Eye/vision finding subhierarchy within its Clinical finding hierarchy. Many missing relationship errors were discovered and confirmed in our analysis. For both test-bed hierarchies, our Quality Assurance methodology yielded a statistically significantly higher number of concepts with missing relationship errors in comparison to a control sample of concepts. Two hypotheses are confirmed by these findings. Conclusions Quality assurance is a critical part of an ontology’s lifecycle, and automated or semi-automated tools for supporting this process are invaluable. We introduced a Quality Assurance methodology targeted at missing relationship errors. Its successful application to the NCIt’s Biological Process hierarchy and SNOMED CT’s Eye/vision finding subhierarchy indicates that it can be a useful addition to the arsenal of tools available to ontology maintenance personnel.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A substring replacement approach for identifying missing IS-A relations in SNOMED CT;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

2. Quality assurance and enrichment of biological and biomedical ontologies and terminologies;BMC Medical Informatics and Decision Making;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3