A Bayesian decision support sequential model for severity of illness predictors and intensive care admissions in pneumonia

Author:

Baez Amado AlejandroORCID,Cochon Laila,Nicolas Jose Maria

Abstract

Abstract Background Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality in the USA. Our objective was to assess the predictive value on critical illness and disposition of a sequential Bayesian Model that integrates Lactate and procalcitonin (PCT) for pneumonia. Methods Sensitivity and specificity of lactate and PCT attained from pooled meta-analysis data. Likelihood ratios calculated and inserted in Bayesian/ Fagan nomogram to calculate posttest probabilities. Bayesian Diagnostic Gains (BDG) were analyzed comparing pre and post-test probability. To assess the value of integrating both PCT and Lactate in Severity of Illness Prediction we built a model that combined CURB65 with PCT as the Pre-Test markers and later integrated the Lactate Likelihood Ratio Values to generate a combined CURB 65 + Procalcitonin + Lactate Sequential value. Results The BDG model integrated a CUBR65 Scores combined with Procalcitonin (LR+ and LR-) for Pre-Test Probability Intermediate and High with Lactate Positive Likelihood Ratios. This generated for the PCT LR+ Post-test Probability (POSITIVE TEST) Posterior probability: 93% (95% CI [91,96%]) and Post Test Probability (NEGATIVE TEST) of: 17% (95% CI [15–20%]) for the Intermediate subgroup and 97% for the high risk sub-group POSITIVE TEST: Post-Test probability:97% (95% CI [95,98%]) NEGATIVE TEST: Post-test probability: 33% (95% CI [31,36%]) . ANOVA analysis for CURB 65 (alone) vs CURB 65 and PCT (LR+) vs CURB 65 and PCT (LR+) and Lactate showed a statistically significant difference (P value = 0.013). Conclusions The sequential combination of CURB 65 plus PCT with Lactate yielded statistically significant results, demonstrating a greater predictive value for severity of illness thus ICU level care.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3