GEN-RWD Sandbox: bridging the gap between hospital data privacy and external research insights with distributed analytics

Author:

Gottardelli Benedetta,Gatta Roberto,Nucciarelli Leonardo,Tudor Andrada Mihaela,Tavazzi Erica,Vallati Mauro,Orini Stefania,Di Giorgi Nicoletta,Damiani Andrea

Abstract

Abstract Background Artificial intelligence (AI) has become a pivotal tool in advancing contemporary personalised medicine, with the goal of tailoring treatments to individual patient conditions. This has heightened the demand for access to diverse data from clinical practice and daily life for research, posing challenges due to the sensitive nature of medical information, including genetics and health conditions. Regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the General Data Protection Regulation (GDPR) in Europe aim to strike a balance between data security, privacy, and the imperative for access. Results We present the Gemelli Generator - Real World Data (GEN-RWD) Sandbox, a modular multi-agent platform designed for distributed analytics in healthcare. Its primary objective is to empower external researchers to leverage hospital data while upholding privacy and ownership, obviating the need for direct data sharing. Docker compatibility adds an extra layer of flexibility, and scalability is assured through modular design, facilitating combinations of Proxy and Processor modules with various graphical interfaces. Security and reliability are reinforced through components like Identity and Access Management (IAM) agent, and a Blockchain-based notarisation module. Certification processes verify the identities of information senders and receivers. Conclusions The GEN-RWD Sandbox architecture achieves a good level of usability while ensuring a blend of flexibility, scalability, and security. Featuring a user-friendly graphical interface catering to diverse technical expertise, its external accessibility enables personnel outside the hospital to use the platform. Overall, the GEN-RWD Sandbox emerges as a comprehensive solution for healthcare distributed analytics, maintaining a delicate equilibrium between accessibility, scalability, and security.

Funder

Italian Ministry for University and Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3