Application of artificial neural network in daily prediction of bleeding in ICU patients treated with anti-thrombotic therapy

Author:

Chen Daonan,Wang Rui,Jiang Yihan,Xing Zijian,Sheng Qiuyang,Liu Xiaoqing,Wang Ruilan,Xie Hui,Zhao Lina

Abstract

Abstract Objectives Anti-thrombotic therapy is the basis of thrombosis prevention and treatment. Bleeding is the main adverse event of anti-thrombosis. Existing laboratory indicators cannot accurately reflect the real-time coagulation function. It is necessary to develop tools to dynamically evaluate the risk and benefits of anti-thrombosis to prescribe accurate anti-thrombotic therapy. Methods The prediction model,daily prediction of bleeding risk in ICU patients treated with anti-thrombotic therapy, was built using deep learning algorithm recurrent neural networks, and the model results and performance were compared with clinicians. Results There was no significant statistical discrepancy in the baseline. ROC curves of the four models in the validation and test set were drawn, respectively. One-layer GRU of the validation set had a larger AUC (0.9462; 95%CI, 0.9147–0.9778). Analysis was conducted in the test set, and the ROC curve showed the superiority of two layers LSTM over one-layer GRU, while the former AUC was 0.8391(95%CI, 0.7786–0.8997). One-layer GRU in the test set possessed a better specificity (sensitivity 0.5942; specificity 0.9300). The Fleiss’ k of junior clinicians, senior clinicians, and machine learning classifiers is 0.0984, 0.4562, and 0.8012, respectively. Conclusions Recurrent neural networks were first applied for daily prediction of bleeding risk in ICU patients treated with anti-thrombotic therapy. Deep learning classifiers are more reliable and consistent than human classifiers. The machine learning classifier suggested strong reliability. The deep learning algorithm significantly outperformed human classifiers in prediction time.

Funder

Shanghai Hospital Development Center Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3