Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology

Author:

Zhou Cheng-Mao,Wang Ying,Yang Jian-Jun,Zhu Yu

Abstract

Abstract Objective There is a strong association between gastric cancer and inflammatory factors. Many studies have shown that machine learning can predict cancer patients’ prognosis. However, there has been no study on predicting gastric cancer death based on machine learning using related inflammatory factor variables. Methods Six machine learning algorithms are applied to predict total gastric cancer death after surgery. Results The Gradient Boosting Machine (GBM) algorithm factors accounting for the prognosis weight outcome show that the three most important factors are neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR) and age. The total postoperative death model showed that among patients with gastric cancer from the predictive test group: The highest accuracy was LR (0.759), followed by the GBM algorithm (0.733). For the six algorithms, the AUC values, from high to low, were LR, GBM, GBDT, forest, Tr and Xgbc. Among the six algorithms, Logistic had the highest precision (precision = 0.736), followed by the GBM algorithm (precision = 0.660). Among the six algorithms, GBM had the highest recall rate (recall = 0.667). Conclusion Postoperative mortality from gastric cancer can be predicted based on machine learning.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3