Privacy protection of medical data in social network

Author:

Su JieORCID,Cao Yi,Chen Yuehui,Liu Yahui,Song Jinming

Abstract

Abstract Background Protection of privacy data published in the health care field is an important research field. The Health Insurance Portability and Accountability Act (HIPAA) in the USA is the current legislation for privacy protection. However, the Institute of Medicine Committee on Health Research and the Privacy of Health Information recently concluded that HIPAA cannot adequately safeguard the privacy, while at the same time researchers cannot use the medical data for effective researches. Therefore, more effective privacy protection methods are urgently needed to ensure the security of released medical data. Methods Privacy protection methods based on clustering are the methods and algorithms to ensure that the published data remains useful and protected. In this paper, we first analyzed the importance of the key attributes of medical data in the social network. According to the attribute function and the main objective of privacy protection, the attribute information was divided into three categories. We then proposed an algorithm based on greedy clustering to group the data points according to the attributes and the connective information of the nodes in the published social network. Finally, we analyzed the loss of information during the procedure of clustering, and evaluated the proposed approach with respect to classification accuracy and information loss rates on a medical dataset. Results The associated social network of a medical dataset was analyzed for privacy preservation. We evaluated the values of generalization loss and structure loss for different values of k and a, i.e. $$k$$ k  = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}, a = {0, 0.2, 0.4, 0.6, 0.8, 1}. The experimental results in our proposed approach showed that the generalization loss approached optimal when a = 1 and k = 21, and structure loss approached optimal when a = 0.4 and k = 3. Conclusion We showed the importance of the attributes and the structure of the released health data in privacy preservation. Our method achieved better results of privacy preservation in social network by optimizing generalization loss and structure loss. The proposed method to evaluate loss obtained a balance between the data availability and the risk of privacy leakage.

Funder

the Postdoctoral Science Foundation of Jinan University

the Postgraduate education reform project of Jinan University

University Innovation Team Project of Jinan

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3