Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records

Author:

Berge Geir Thore,Granmo Ole-Christoffer,Tveit Tor Oddbjørn,Ruthjersen Anna Linda,Sharma JiviteshORCID

Abstract

Abstract Background Data mining of electronic health records (EHRs) has a huge potential for improving clinical decision support and to help healthcare deliver precision medicine. Unfortunately, the rule-based and machine learning-based approaches used for natural language processing (NLP) in healthcare today all struggle with various shortcomings related to performance, efficiency, or transparency. Methods In this paper, we address these issues by presenting a novel method for NLP that implements unsupervised learning of word embeddings, semi-supervised learning for simplified and accelerated clinical vocabulary and concept building, and deterministic rules for fine-grained control of information extraction. The clinical language is automatically learnt, and vocabulary, concepts, and rules supporting a variety of NLP downstream tasks can further be built with only minimal manual feature engineering and tagging required from clinical experts. Together, these steps create an open processing pipeline that gradually refines the data in a transparent way, which greatly improves the interpretable nature of our method. Data transformations are thus made transparent and predictions interpretable, which is imperative for healthcare. The combined method also has other advantages, like potentially being language independent, demanding few domain resources for maintenance, and able to cover misspellings, abbreviations, and acronyms. To test and evaluate the combined method, we have developed a clinical decision support system (CDSS) named Information System for Clinical Concept Searching (ICCS) that implements the method for clinical concept tagging, extraction, and classification. Results In empirical studies the method shows high performance (recall 92.6%, precision 88.8%, F-measure 90.7%), and has demonstrated its value to clinical practice. Here we employ a real-life EHR-derived dataset to evaluate the method’s performance on the task of classification (i.e., detecting patient allergies) against a range of common supervised learning algorithms. The combined method achieves state-of-the-art performance compared to the alternative methods we evaluate. We also perform a qualitative analysis of common word embedding methods on the task of word similarity to examine their potential for supporting automatic feature engineering for clinical NLP tasks. Conclusions Based on the promising results, we suggest more research should be aimed at exploiting the inherent synergies between unsupervised, supervised, and rule-based paradigms for clinical NLP.

Funder

Norwegian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference109 articles.

1. Berge GT, Granmo O-C, Tveit TO. Combining unsupervised, supervised, and rule-based algorithms for text mining of electronic health records - a clinical decision support system for identifying and classifying allergies of concern for anesthesia during surgery. In: Paspallis N Raspopoulos M Barry M Lang H Linger C Schneider Eds Inf. Syst. Dev. Adv. Methods Tools Manag. ISD2017 Proc. 2017.

2. Ruiz CS. Machine learning and knowledge management for decision support. Applications in Promotional Efficiency and Healthcare, PhD Thesis, Universidad Rey Juan Carlos. 2015.

3. Jaspers MW, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc. 2011;18:327–34.

4. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330:765.

5. Afzal Z, Pons E, Kang N, Sturkenboom MC, Schuemie MJ, Kors JA. ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus. BMC Bioinformatics. 2014;15:373.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3