A graph-based gene selection method for medical diagnosis problems using a many-objective PSO algorithm

Author:

Azadifar Saeid,Ahmadi Ali

Abstract

Abstract Background Gene expression data play an important role in bioinformatics applications. Although there may be a large number of features in such data, they mainly tend to contain only a few samples. This can negatively impact the performance of data mining and machine learning algorithms. One of the most effective approaches to alleviate this problem is to use gene selection methods. The aim of gene selection is to reduce the dimensions (features) of gene expression data leading to eliminating irrelevant and redundant genes. Methods This paper presents a hybrid gene selection method based on graph theory and a many-objective particle swarm optimization (PSO) algorithm. To this end, a filter method is first utilized to reduce the initial space of the genes. Then, the gene space is represented as a graph to apply a graph clustering method to group the genes into several clusters. Moreover, the many-objective PSO algorithm is utilized to search an optimal subset of genes according to several criteria, which include classification error, node centrality, specificity, edge centrality, and the number of selected genes. A repair operator is proposed to cover the whole space of the genes and ensure that at least one gene is selected from each cluster. This leads to an increasement in the diversity of the selected genes. Results To evaluate the performance of the proposed method, extensive experiments are conducted based on seven datasets and two evaluation measures. In addition, three classifiers—Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)—are utilized to compare the effectiveness of the proposed gene selection method with other state-of-the-art methods. The results of these experiments demonstrate that our proposed method not only achieves more accurate classification, but also selects fewer genes than other methods. Conclusion This study shows that the proposed multi-objective PSO algorithm simultaneously removes irrelevant and redundant features using several different criteria. Also, the use of the clustering algorithm and the repair operator has improved the performance of the proposed method by covering the whole space of the problem.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3