Author:
Groza Tudor,Caufield Harry,Gration Dylan,Baynam Gareth,Haendel Melissa A.,Robinson Peter N.,Mungall Christopher J.,Reese Justin T.
Abstract
Abstract
Objective
Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation.
Materials and methods
The experimental setup of the study included seven prompts of various levels of specificity, two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, one consisting of publication abstracts and the other clinical observations.
Results
The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses the current best in class tool. Without in-context learning, however, performance is significantly below the existing approaches.
Conclusion
Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of concordance between different runs using the same prompt and input make the use of these LLMs challenging for this particular task.
Funder
National Institutes of Health
The Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy
Angela Wright Bennett Foundation
The Stan Perron Charitable Foundation, Australia
The McCusker Charitable Foundation via Channel 7 Telethon Trust
Mineral Resources via the Perth Children's Hospital Foundation
National Human Genome Research Institute
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Taruscio D, Groft SC, Cederroth H, et al. Undiagnosed Diseases Network International (UDNI): White paper for global actions to meet patient needs. Mol Genet Metab. 2015;116:223–5.
2. Boycott KM, Azzariti DR, Hamosh A, Rehm HL. Seven years since the launch of the Matchmaker Exchange: The evolution of genomic matchmaking. Hum Mutat. 2022;43:659–67.
3. Jacobsen JOB, Baudis M, Baynam GS, et al. The GA4GH Phenopacket schema defines a computable representation of clinical data. Nat Biotechnol. 2022;40:817–20.
4. Smedley D, Schubach M, Jacobsen JOB, et al. A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am J Hum Genet. 2016;99:595–606.
5. Son JH, Xie G, Yuan C, et al. Deep Phenotyping on electronic health records facilitates genetic diagnosis by clinical exomes. Am J Hum Genet. 2018;103:58–73.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献