Exploration of biomedical knowledge for recurrent glioblastoma using natural language processing deep learning models

Author:

Jang Bum-Sup,Park Andrew J.,Kim In Ah

Abstract

AbstractBackgroundEfficient exploration of knowledge for the treatment of recurrent glioblastoma (GBM) is critical for both clinicians and researchers. However, due to the large number of clinical trials and published articles, searching for this knowledge is very labor-intensive. In the current study, using natural language processing (NLP), we analyzed medical research corpora related to recurrent glioblastoma to find potential targets and treatments.MethodsWe fine-tuned the ‘SAPBERT’, which was pretrained on biomedical ontologies, to perform question/answering (QA) and name entity recognition (NER) tasks for medical corpora. The model was fine-tuned with the SQUAD2 dataset and multiple NER datasets designed for QA task and NER task, respectively. Corpora were collected by searching the terms “recurrent glioblastoma” and “drug target”, published from 2000 to 2020 in the Web of science (N = 288 articles). Also, clinical trial corpora were collected from ‘clinicaltrial.gov’ using the searching term of ‘recurrent glioblastoma” (N = 587 studies).ResultsFor the QA task, the model showed an F1 score of 0.79. For the NER task, the model showed F1 scores of 0.90 and 0.76 for drug and gene name recognition, respectively. When asked what the molecular targets were promising for recurrent glioblastoma, the model answered that RTK inhibitors or LPA-1 antagonists were promising. From collected clinical trials, the model summarized them in the order of bevacizumab, temozolomide, lomustine, and nivolumab. Based on published articles, the model found the many drug-gene pairs with the NER task, and we presented them with a circus plot and related summarization (https://github.com/bigwiz83/NLP_rGBM).ConclusionUsing NLP deep learning models, we could explore potential targets and treatments based on medical research and clinical trial corpora. The knowledge found by the models may be used for treating recurrent glioblastoma.

Funder

The Ministry of Science and Information & Communication Technology

The SNUBH Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3