Author:
Safari Abdollah,Petkau John,FitzGerald Mark J.,Sadatsafavi Mohsen
Abstract
Abstract
Background
The natural history of many chronic diseases is characterized by periods of increased disease activity, commonly referred to as flare-ups or exacerbations. Accurate characterization of the burden of these exacerbations is an important research objective.
Methods
The purpose of this work was to develop a statistical framework for nuanced characterization of the three main features of exacerbations: their rate, duration, and severity, with interrelationships among these features being a particular focus. We jointly specified a zero-inflated accelerated failure time regression model for the rate, an accelerated failure time regression model for the duration, and a logistic regression model for the severity of exacerbations. Random effects were incorporated into each component to capture heterogeneity beyond the variability attributable to observed characteristics, and to describe the interrelationships among these components.
Results
We used pooled data from two clinical trials in asthma as an exemplary application to illustrate the utility of the joint modeling approach. The model fit clearly indicated the presence of heterogeneity in all three components. A novel finding was that the new therapy reduced not just the rate but also the duration of exacerbations, but did not have a significant impact on their severity. After controlling for covariates, exacerbations among more frequent exacerbators tended to be shorter and less likely to be severe.
Conclusions
We conclude that a joint modeling framework, programmable in available software, can provide novel insights about how the rate, duration, and severity of episodic events interrelate, and enables consistent inference on the effect of treatments on different disease outcomes.
Trial registration Ethics approval was obtained from the University of British Columbia Human Ethics Board (H17-00938).
Funder
Genome British Columbia and Genome Canada
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献