Inter/intra-frame constrained vascular segmentation in X-ray angiographic image sequence

Author:

Song Shuang,Du Chenbing,Chen Ying,Ai Danni,Song Hong,Huang Yong,Wang Yongtian,Yang Jian

Abstract

Abstract Background Automatic vascular segmentation in X-ray angiographic image sequence is of crucial interest, for instance, for better quantifying coronary arteries in diagnostic and interventional procedures. Methods A novel inter/intra-frame constrained vascular segmentation method is proposed to automatically segment vessels in coronary X-ray angiographic image sequence. First, a morphological filter operator is applied to remove structures undergoing the respiratory motion from the original image sequence. Second, an inter-frame constrained robust principal component analysis (RPCA) is utilized to remove the quasi-static structures from the image sequence. Third, an intra-frame constrained RPCA is employed to smooth the final extracted vascular sequence. Fourth, a multi-feature fusion is designed to improve the vascular contrast and the final vascular segmentation is realized by thresholding-based method. Results Experiments are conducted on 22 clinical X-ray angiographic image sequences. The global and local contrast-to-noise ratio of the proposed method are 6.6344 and 4.2882, respectively. And the precision, sensitivity and F1 value are 0.7378, 0.7960 and 0.7658, respectively. It demonstrates that our method is effective and robust for vascular segmentation from image sequence. Conclusions The proposed method is effective to remove non-vascular structures, reduce motion artefacts and other non-uniform illumination caused noises. Also, the proposed method is online which can just process one image per time without re-optimizing the model.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference24 articles.

1. Cavaye D, White R. Imaging technologies in cardiovascular interventions. J Cardiovasc Surg. 1993;34:13–22.

2. Wang C, Moreno R, Smedby Ö. Vessel segmentation using implicit model-guided level sets. In: MICCAI Workshop" 3D Cardiovascular Imaging: a MICCAI segmentation Challenge", Nice France, 1st of October 2012; 2012.

3. Sun K, Chen Z, Jiang S. Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans Biomed Eng. 2012;59:464–73.

4. Cheng Y, Hu X, Wang J, Wang Y, Tamura S. Accurate vessel segmentation with constrained B-snake. IEEE Trans Image Process. 2015;24:2440–55.

5. Lee S-H, Lee S. Adaptive Kalman snake for semi-autonomous 3D vessel tracking. Comput Methods Prog Biomed. 2015;122:56–75.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3