Author:
Huang Ming,Shah Nilay D.,Yao Lixia
Abstract
Abstract
Background
Sequence alignment is a way of arranging sequences (e.g., DNA, RNA, protein, natural language, financial data, or medical events) to identify the relatedness between two or more sequences and regions of similarity. For Electronic Health Records (EHR) data, sequence alignment helps to identify patients of similar disease trajectory for more relevant and precise prognosis, diagnosis and treatment of patients.
Methods
We tested two cutting-edge global sequence alignment methods, namely dynamic time warping (DTW) and Needleman-Wunsch algorithm (NWA), together with their local modifications, DTW for Local alignment (DTWL) and Smith-Waterman algorithm (SWA), for aligning patient medical records. We also used 4 sets of synthetic patient medical records generated from a large real-world EHR database as gold standard data, to objectively evaluate these sequence alignment algorithms.
Results
For global sequence alignments, 47 out of 80 DTW alignments and 11 out of 80 NWA alignments had superior similarity scores than reference alignments while the rest 33 DTW alignments and 69 NWA alignments had the same similarity scores as reference alignments. Forty-six out of 80 DTW alignments had better similarity scores than NWA alignments with the rest 34 cases having the equal similarity scores from both algorithms. For local sequence alignments, 70 out of 80 DTWL alignments and 68 out of 80 SWA alignments had larger coverage and higher similarity scores than reference alignments while the rest DTWL alignments and SWA alignments received the same coverage and similarity scores as reference alignments. Six out of 80 DTWL alignments showed larger coverage and higher similarity scores than SWA alignments. Thirty DTWL alignments had the equal coverage but better similarity scores than SWA. DTWL and SWA received the equal coverage and similarity scores for the rest 44 cases.
Conclusions
DTW, NWA, DTWL and SWA outperformed the reference alignments. DTW (or DTWL) seems to align better than NWA (or SWA) by inserting new daily events and identifying more similarities between patient medical records. The evaluation results could provide valuable information on the strengths and weakness of these sequence alignment methods for future development of sequence alignment methods and patient similarity-based studies.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference26 articles.
1. Wang Y, Tian Y, Tian L-L, Qian Y-M, Li J-S. An electronic medical record system with treatment recommendations based on patient similarity. J Med Syst. 2015;39(5):55.
2. Wang F, Hu J, Sun J, editors. Medical prognosis based on patient similarity and expert feedback. 2012 21st International Conference on Pattern Recognition (ICPR); 2012: IEEE. ISBN: 4990644107.
3. Lee J, Maslove DM, Dubin JA. Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PLoS One. 2015;10(5):e0127428.
4. Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction models based on health data: a scoping review. JMIR Med Inform. 2017;5(1):e7. PMID: 28258046. https://doi.org/10.2196/medinform.6730.
5. Brown S-A. Patient Similarity: Emerging Concepts in Systems and Precision Medicine. Front Physiol. 2016;7(561). https://doi.org/10.3389/fphys.2016.00561.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献