Construction of a knowledge graph for breast cancer diagnosis based on Chinese electronic medical records: development and usability study

Author:

Li Xiaolong,Sun Shuifa,Tang Tinglong,Lu Ji,Zhang Lijuan,Yin Jie,Geng Qian,Wu Yirong

Abstract

Abstract Background Electronic medical records (EMRs) contain a wealth of information related to breast cancer diagnosis and treatment. Extracting relevant features from these medical records and constructing a knowledge graph can significantly contribute to an efficient data analysis and decision support system for breast cancer diagnosis. Methods An approach was proposed to develop a workflow for effectively extracting breast cancer-related features from Chinese breast cancer mammography reports and constructing a knowledge graph for breast cancer diagnosis. Firstly, the concept layer of the knowledge graph for breast cancer diagnosis was constructed based on breast cancer diagnosis and treatment guidelines, along with insights from clinical experts. .Next, a BiLSTM-Highway-CRF model was designed to extract the mammography features, which formed the data layer of the knowledge graph. Finally, the knowledge graph was constructed by combining the concept layer and the data layer in a Neo4j graph data platform, and then applied in visualization analysis, semantic query and computer assisted diagnosis. Results Mammographic features were extracted from a total of 1171 mammography examination reports. The overall extraction performance of the model achieved an accuracy rate of 97.16%, a recall rate of 98.06%, and a F1 score of 97.61%. Additionally, 47,660 relationships between entities were identified based on the four different types of relationships defined in the concept layer. The knowledge graph for breast cancer diagnosis was constructed after inputting mammographic features and relationships into the Neo4j graph data platform. The model was assessed from the concept layer, data layer, and application layer perspectives, and showed promising results. Conclusions The proposed workflow is applicable for constructing knowledge graphs for breast cancer diagnosis based on Chinese EMRs. This study serves as a reference for the rapid design, construction, and application of knowledge graphs for diagnosis and treatment of other diseases. Furthermore, it offers a potential solution to address the issues of limited data sharing and format inconsistencies present in Chinese EMR data.

Funder

National Social Science Fund of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3