Exploratory study on classification of chronic obstructive pulmonary disease combining multi-stage feature fusion and machine learning

Author:

Peng Junfeng,Zhou Mi,Zou Kaiqiang,Zhu Xiongyong,Xu Jun,Teng Yi,Zhang Feifei,Chen Guoming

Abstract

Abstract Background Due to the complexity and high heterogeneity of the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), the guidelines (global initiative for chronic obstructive, GOLD) is unable to fully guide the treatment of AECOPD. Objectives To provide a rapid treatment in line with the development of the AECOPD after admission. In this paper, we propose a multi-stage feature fusion (MSFF) framework combining machine learning to track the diseases deterioration risk of the AECOPD. Methods First, we identify 408 AECOPD patients as the study population. Then, feature segment and fusion methods are applied to generate the phased data set. Finally, human studies are designed to evaluate the performance of the MSFF framework. Results The experimental results show that the proposed framework is potential to obtain the full-process tracking of deterioration risk for the AECOPD patients. The proposed MSFF framework achieves a higher overall accuracy average and F1 scores than the four physician groups i.e., IM, Surgery, Emergency, and ICU. Conclusions The proposed MSFF model may serve as a useful disease tracking tool to estimate the deterioration risk at each stage, and finally achieve the disease monitoring and management for AECOPD patients.

Funder

Scientific research platforms and projects of colleges and universities in Guangdong Province

Young innovative talents project of colleges and universities in Guangdong Province

Science and Technology Planning Project of Guangzhou

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing the Impact of Feature Correlation on Classification Acuracy of Machine Learning Model;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

2. Analyzing the Impact of Feature Correlation on Classification Acuracy of Machine Learning Model;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

3. A machine learning based approach for quantitative evaluation of cell migration in Transwell assays based on deformation characteristics;The Analyst;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3