A deep semantic segmentation correction network for multi-model tiny lesion areas detection

Author:

Liu Yue,Li Xiang,Li Tianyang,Li Bin,Wang Zhensong,Gan Jie,Wei BenzhengORCID

Abstract

Abstract Background Semantic segmentation of white matter hyperintensities related to focal cerebral ischemia (FCI) and lacunar infarction (LACI) is of significant importance for the automatic screening of tiny cerebral lesions and early prevention of LACI. However, existing studies on brain magnetic resonance imaging lesion segmentation focus on large lesions with obvious features, such as glioma and acute cerebral infarction. Owing to the multi-model tiny lesion areas of FCI and LACI, reliable and precise segmentation and/or detection of these lesion areas is still a significant challenge task. Methods We propose a novel segmentation correction algorithm for estimating the lesion areas via segmentation and correction processes, in which we design two sub-models simultaneously: a segmentation network and a correction network. The segmentation network was first used to extract and segment diseased areas on T2 fluid-attenuated inversion recovery (FLAIR) images. Consequently, the correction network was used to classify these areas at the corresponding locations on T1 FLAIR images to distinguish between FCI and LACI. Finally, the results of the correction network were used to correct the segmentation results and achieve segmentation and recognition of the lesion areas. Results In our experiment on magnetic resonance images of 113 clinical patients, our method achieved a precision of 91.76% for detection and 92.89% for classification, indicating a powerful method to distinguish between small lesions, such as FCI and LACI. Conclusions Overall, we developed a complete method for segmentation and detection of WMHs related to FCI and LACI. The experimental results show that it has potential clinical application potential. In the future, we will collect more clinical data and test more types of tiny lesions at the same time.

Funder

Natural Science Foundation of China

Introduction and Cultivation Program for Young Creative Talents in Colleges and Universities of Shandong Province

Natural Science Foundation of Shandong Province

Project of Science and technology plan of Shandong higher education institutions Program

Project of Shandong Province Medical and Health Technology Development Program

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3