Ethics and governance of trustworthy medical artificial intelligence

Author:

Zhang Jie,Zhang Zong-ming

Abstract

Abstract Background The growing application of artificial intelligence (AI) in healthcare has brought technological breakthroughs to traditional diagnosis and treatment, but it is accompanied by many risks and challenges. These adverse effects are also seen as ethical issues and affect trustworthiness in medical AI and need to be managed through identification, prognosis and monitoring. Methods We adopted a multidisciplinary approach and summarized five subjects that influence the trustworthiness of medical AI: data quality, algorithmic bias, opacity, safety and security, and responsibility attribution, and discussed these factors from the perspectives of technology, law, and healthcare stakeholders and institutions. The ethical framework of ethical values-ethical principles-ethical norms is used to propose corresponding ethical governance countermeasures for trustworthy medical AI from the ethical, legal, and regulatory aspects. Results Medical data are primarily unstructured, lacking uniform and standardized annotation, and data quality will directly affect the quality of medical AI algorithm models. Algorithmic bias can affect AI clinical predictions and exacerbate health disparities. The opacity of algorithms affects patients’ and doctors’ trust in medical AI, and algorithmic errors or security vulnerabilities can pose significant risks and harm to patients. The involvement of medical AI in clinical practices may threaten doctors ‘and patients’ autonomy and dignity. When accidents occur with medical AI, the responsibility attribution is not clear. All these factors affect people’s trust in medical AI. Conclusions In order to make medical AI trustworthy, at the ethical level, the ethical value orientation of promoting human health should first and foremost be considered as the top-level design. At the legal level, current medical AI does not have moral status and humans remain the duty bearers. At the regulatory level, strengthening data quality management, improving algorithm transparency and traceability to reduce algorithm bias, and regulating and reviewing the whole process of the AI industry to control risks are proposed. It is also necessary to encourage multiple parties to discuss and assess AI risks and social impacts, and to strengthen international cooperation and communication.

Funder

National Social Science Fund of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3