Abstract
Abstract
Background
In recent years, several studies have applied advanced AI methods, i.e., deep reinforcement learning, in discovering more efficient treatment policies for sepsis. However, due to a paucity of understanding of sepsis itself, the existing approaches still face a severe evaluation challenge, that is, how to properly evaluate the goodness of treatments during the learning process and the effectiveness of the final learned treatment policies.
Methods
We propose a deep inverse reinforcement learning with mini-tree model that integrates different aspects of factors into the reward formulation, including the critical factors in causing mortality and the key indicators in the existing sepsis treatment guidelines, in order to provide a more comprehensive evaluation of treatments during learning. A new off-policy evaluation method is then proposed to enable more robust evaluation of the learned policies by considering the weighted averaged value functions estimated until the current step.
Results
Results in the MIMIC-III dataset show that the proposed methods can achieve more efficient treatment policies with higher reliability compared to those used by the clinicians.
Conclusions
A more sound and comprehensive evaluation of treatments of sepsis should consider the most critical factors in infulencing the mortality during treatment as well as those key indicators in the existing sepsis diagnosis guidelines.
Funder
Hongkong Scholar Program
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献