Assessing stroke severity using electronic health record data: a machine learning approach

Author:

Kogan EmilyORCID,Twyman Kathryn,Heap Jesse,Milentijevic Dejan,Lin Jennifer H.,Alberts Mark

Abstract

Abstract Background Stroke severity is an important predictor of patient outcomes and is commonly measured with the National Institutes of Health Stroke Scale (NIHSS) scores. Because these scores are often recorded as free text in physician reports, structured real-world evidence databases seldom include the severity. The aim of this study was to use machine learning models to impute NIHSS scores for all patients with newly diagnosed stroke from multi-institution electronic health record (EHR) data. Methods NIHSS scores available in the Optum© de-identified Integrated Claims-Clinical dataset were extracted from physician notes by applying natural language processing (NLP) methods. The cohort analyzed in the study consists of the 7149 patients with an inpatient or emergency room diagnosis of ischemic stroke, hemorrhagic stroke, or transient ischemic attack and a corresponding NLP-extracted NIHSS score. A subset of these patients (n = 1033, 14%) were held out for independent validation of model performance and the remaining patients (n = 6116, 86%) were used for training the model. Several machine learning models were evaluated, and parameters optimized using cross-validation on the training set. The model with optimal performance, a random forest model, was ultimately evaluated on the holdout set. Results Leveraging machine learning we identified the main factors in electronic health record data for assessing stroke severity, including death within the same month as stroke occurrence, length of hospital stay following stroke occurrence, aphagia/dysphagia diagnosis, hemiplegia diagnosis, and whether a patient was discharged to home or self-care. Comparing the imputed NIHSS scores to the NLP-extracted NIHSS scores on the holdout data set yielded an R2 (coefficient of determination) of 0.57, an R (Pearson correlation coefficient) of 0.76, and a root-mean-squared error of 4.5. Conclusions Machine learning models built on EHR data can be used to determine proxies for stroke severity. This enables severity to be incorporated in studies of stroke patient outcomes using administrative and EHR databases.

Funder

Janssen Scientific Affairs, LLC

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3