Dementia prediction in the general population using clinically accessible variables: a proof-of-concept study using machine learning. The AGES-Reykjavik study

Author:

Twait Emma L.,Andaur Navarro Constanza L.,Gudnason Vilmunur,Hu Yi-Han,Launer Lenore J.,Geerlings Mirjam I.

Abstract

Abstract Background Early identification of dementia is crucial for prompt intervention for high-risk individuals in the general population. External validation studies on prognostic models for dementia have highlighted the need for updated models. The use of machine learning in dementia prediction is in its infancy and may improve predictive performance. The current study aimed to explore the difference in performance of machine learning algorithms compared to traditional statistical techniques, such as logistic and Cox regression, for prediction of all-cause dementia. Our secondary aim was to assess the feasibility of only using clinically accessible predictors rather than MRI predictors. Methods Data are from 4,793 participants in the population-based AGES-Reykjavik Study without dementia or mild cognitive impairment at baseline (mean age: 76 years, % female: 59%). Cognitive, biometric, and MRI assessments (total: 59 variables) were collected at baseline, with follow-up of incident dementia diagnoses for a maximum of 12 years. Machine learning algorithms included elastic net regression, random forest, support vector machine, and elastic net Cox regression. Traditional statistical methods for comparison were logistic and Cox regression. Model 1 was fit using all variables and model 2 was after feature selection using the Boruta package. A third model explored performance when leaving out neuroimaging markers (clinically accessible model). Ten-fold cross-validation, repeated ten times, was implemented during training. Upsampling was used to account for imbalanced data. Tuning parameters were optimized for recalibration automatically using the caret package in R. Results 19% of participants developed all-cause dementia. Machine learning algorithms were comparable in performance to logistic regression in all three models. However, a slight added performance was observed in the elastic net Cox regression in the third model (c = 0.78, 95% CI: 0.78–0.78) compared to the traditional Cox regression (c = 0.75, 95% CI: 0.74–0.77). Conclusions Supervised machine learning only showed added benefit when using survival techniques. Removing MRI markers did not significantly worsen our model’s performance. Further, we presented the use of a nomogram using machine learning methods, showing transportability for the use of machine learning models in clinical practice. External validation is needed to assess the use of this model in other populations. Identifying high-risk individuals will amplify prevention efforts and selection for clinical trials.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3