Evaluation of medical decision support systems (DDX generators) using real medical cases of varying complexity and origin

Author:

Fritz P.,Kleinhans A.,Raoufi R.,Sediqi A.,Schmid N.,Schricker S.,Schanz M.,Fritz-Kuisle C.,Dalquen P.,Firooz H.,Stauch G.,Alscher M. D.

Abstract

Abstract Background Medical decision support systems (CDSSs) are increasingly used in medicine, but their utility in daily medical practice is difficult to evaluate. One variant of CDSS is a generator of differential diagnoses (DDx generator). We performed a feasibility study on three different, publicly available data sets of medical cases in order to identify the frequency in which two different DDx generators provide helpful information (either by providing a list of differential diagnosis or recognizing the expert diagnosis if available) for a given case report. Methods Used data sets were n = 105 cases from a web-based forum of telemedicine with real life cases from Afghanistan (Afghan data set; AD), n = 124 cases discussed in a web-based medical forum (Coliquio data set; CD). Both websites are restricted for medical professionals only. The third data set consisted 50 special case reports published in the New England Journal of Medicine (NEJM). After keyword extraction, data were entered into two different DDx generators (IsabelHealth (IH), Memem7 (M7)) to examine differences in target diagnosis recognition and physician-rated usefulness between DDx generators. Results Both DDx generators detected the target diagnosis equally successfully (all cases: M7, 83/170 (49%); IH 90/170 (53%), NEJM: M7, 28/50 (56%); IH, 34/50 (68%); differences n.s.). Differences occurred in AD, where detection of an expert diagnosis was less successful with IH than with M7 (29.7% vs. 54.1%, p = 0.003). In contrast, in CD IH performed significantly better than M7 (73.9% vs. 32.6%, p = 0.021). Congruent identification of target diagnosis occurred in only 46/170 (27.1%) of cases. However, a qualitative analysis of the DDx results revealed useful complements from using the two systems in parallel. Conclusion Both DDx systems IsabelHealth and Memem7 provided substantial help in finding a helpful list of differential diagnoses or identifying the target diagnosis either in standard cases or complicated and rare cases. Our pilot study highlights the need for different levels of complexity and types of real-world medical test cases, as there are significant differences between DDx generators away from traditional case reports. Combining different results from DDx generators seems to be a possible approach for future review and use of the systems.

Funder

Robert Bosch Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3