Author:
Fritz P.,Kleinhans A.,Raoufi R.,Sediqi A.,Schmid N.,Schricker S.,Schanz M.,Fritz-Kuisle C.,Dalquen P.,Firooz H.,Stauch G.,Alscher M. D.
Abstract
Abstract
Background
Medical decision support systems (CDSSs) are increasingly used in medicine, but their utility in daily medical practice is difficult to evaluate. One variant of CDSS is a generator of differential diagnoses (DDx generator). We performed a feasibility study on three different, publicly available data sets of medical cases in order to identify the frequency in which two different DDx generators provide helpful information (either by providing a list of differential diagnosis or recognizing the expert diagnosis if available) for a given case report.
Methods
Used data sets were n = 105 cases from a web-based forum of telemedicine with real life cases from Afghanistan (Afghan data set; AD), n = 124 cases discussed in a web-based medical forum (Coliquio data set; CD). Both websites are restricted for medical professionals only. The third data set consisted 50 special case reports published in the New England Journal of Medicine (NEJM). After keyword extraction, data were entered into two different DDx generators (IsabelHealth (IH), Memem7 (M7)) to examine differences in target diagnosis recognition and physician-rated usefulness between DDx generators.
Results
Both DDx generators detected the target diagnosis equally successfully (all cases: M7, 83/170 (49%); IH 90/170 (53%), NEJM: M7, 28/50 (56%); IH, 34/50 (68%); differences n.s.). Differences occurred in AD, where detection of an expert diagnosis was less successful with IH than with M7 (29.7% vs. 54.1%, p = 0.003). In contrast, in CD IH performed significantly better than M7 (73.9% vs. 32.6%, p = 0.021). Congruent identification of target diagnosis occurred in only 46/170 (27.1%) of cases. However, a qualitative analysis of the DDx results revealed useful complements from using the two systems in parallel.
Conclusion
Both DDx systems IsabelHealth and Memem7 provided substantial help in finding a helpful list of differential diagnoses or identifying the target diagnosis either in standard cases or complicated and rare cases. Our pilot study highlights the need for different levels of complexity and types of real-world medical test cases, as there are significant differences between DDx generators away from traditional case reports. Combining different results from DDx generators seems to be a possible approach for future review and use of the systems.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference33 articles.
1. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765.
2. Usman OA, Oshiro C, Chambers JG, Tu SW, Martins S, Robinson A, Goldstein MK. Selecting test cases from the electronic health record for software testing of knowledge-based clinical decision support systems. AMIA Annu Symp Proc. 2018;2018:1046–55.
3. Kovalchuk SV, Funkner AA, Metsker OG, Yakovlev AN. Simulation of patient flow in multiple healthcare units using process and data mining techniques for model identification. J Biomed Inform. 2018;82:128–42.
4. Breitbart EW, Choudhury K, Andersen AD, Bunde H, Breitbart M, Sideri AM, Fengler S, Zibert JR. Improved patient satisfaction and diagnostic accuracy in skin diseases with a visual clinical decision support system-a feasibility study with general practitioners. PLoS ONE. 2020;15(7): e0235410.
5. Olsen RM, Aasvang EK, Meyhoff CS, Dissing Sorensen HB. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput Biol Med. 2018;101:15–21.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献