Abstract
Abstract
Background
Polypharmacy is common among older adults and it represents a public health concern, due to the negative health impacts potentially associated with the use of several medications. However, the large number of medication combinations and sequences of use makes it complicated for traditional statistical methods to predict which therapy is genuinely associated with health outcomes. The project aims to use artificial intelligence (AI) to determine the quality of polypharmacy among older adults with chronic diseases in the province of Québec, Canada.
Methods
We will use data from the Quebec Integrated Chronic Disease Surveillance System (QICDSS). QICDSS contains information about prescribed medications in older adults in Quebec collected over 20 years. It also includes diagnostic codes and procedures, and sociodemographic data linked through a unique identification number for each individual. Our research will be structured around three interconnected research axes: AI, Health, and Law&Ethics. The AI research axis will develop algorithms for finding frequent patterns of medication use that correlate with health events, considering data locality and temporality (explainable AI or XAI). The Health research axis will translate these patterns into polypharmacy indicators relevant to public health surveillance and clinicians. The Law&Ethics axis will assess the social acceptability of the algorithms developed using AI tools and the indicators developed by the Heath axis and will ensure that the developed indicators neither discriminate against any population group nor increase the disparities already present in the use of medications.
Discussion
The multi-disciplinary research team consists of specialists in AI, health data, statistics, pharmacy, public health, law, and ethics, which will allow investigation of polypharmacy from different points of view and will contribute to a deeper understanding of the clinical, social, and ethical issues surrounding polypharmacy and its surveillance, as well as the use of AI for health record data. The project results will be disseminated to the scientific community, healthcare professionals, and public health decision-makers in peer-reviewed publications, scientific meetings, and reports. The diffusion of the results will ensure the confidentiality of individual data.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference61 articles.
1. Canadian Institute for Health Information. Prescribed drug spending in Canada, 2020: A focus on public drug programs. Ottawa, ON: CIHI; 2020.
2. OECD. Pharmaceutical spending (indicator); 2019. Available from: https://data.oecd.org/healthres/pharmaceutical-spending.htm. Accessed 17 February 2021.
3. Schumock GT, Stubbings J, Hoffman JM, Wiest MD, Suda KJ, Rim MH, et al. National trends in prescription drug expenditures and projections for 2019. Am J Health Syst Pharm. 2019 Jul 18;76(15):1105–21. https://doi.org/10.1093/ajhp/zxz109.
4. Kesselheim AS, Avorn J, Sarpatwari A. The high cost of prescription drugs in the United States: origins and prospects for reform. JAMA. 2016;316:858–71. https://doi.org/10.1001/jama.2016.11237.
5. Linnér L, Eriksson I, Persson M, Wettermark B. Forecasting drug utilization and expenditure: ten years of experience in Stockholm. BMC Health Serv Res. 2020;20:410. https://doi.org/10.1186/s12913-020-05170-0.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献