How to automatically turn patient experience free-text responses into actionable insights: a natural language programming (NLP) approach

Author:

Cammel Simone A.ORCID,De Vos Marit S.,van Soest Daphne,Hettne Kristina M.,Boer Fred,Steyerberg Ewout W.,Boosman Hileen

Abstract

Abstract Background Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language Processing (NLP) techniques could provide a data-driven, hospital-independent solution to indicate points for quality improvement. Methods This retrospective study used routinely collected patient experience data from two hospitals. A data-driven NLP approach was used. Free-text responses were categorized into topics, subtopics (i.e. n-grams) and labelled with a sentiment score. The indicator ‘impact’, combining sentiment and frequency, was calculated to reveal topics to improve, monitor or celebrate. The topic modelling architecture was tested on data from a second hospital to examine whether the architecture is transferable to another hospital. Results A total of 38,664 survey responses from the first hospital resulted in 127 topics and 294 n-grams. The indicator ‘impact’ revealed n-grams to celebrate (15.3%), improve (8.8%), and monitor (16.7%). For hospital 2, a similar percentage of free-text responses could be labelled with a topic and n-grams. Between-hospitals, most topics (69.7%) were similar, but 32.2% of topics for hospital 1 and 29.0% of topics for hospital 2 were unique. Conclusions In both hospitals, NLP techniques could be used to categorize patient experience free-text responses into topics, sentiment labels and to define priorities for improvement. The model’s architecture was shown to be hospital-specific as it was able to discover new topics for the second hospital. These methods should be considered for future patient experience analyses to make better use of this valuable source of information.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference37 articles.

1. Hamming, J. F., H. Boosman, and P. J. de Mheen Marang-van. "The Association Between Complications, Incidents, and Patient Experience: Retrospective Linkage of Routine Patient Experience Surveys and Safety Data." Journal of patient safety (2019).

2. Cunningham M, Wells M. Qualitative analysis of 6961 free-text comments from the first National Cancer Patient Experience Survey in Scotland. BMJ Open. 2017;7(6):e015726.

3. Blei DM, McAuliffe JD. Supervised topic models; 2010.

4. Li S. Topic modeling and Latent Dirichlet Allocation (LDA) in Python; 2018.

5. Abirami AM, Askarunisa A. Sentiment analysis model to emphasize the impact of online reviews in Healthcare industry, vol. 41; 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3