Abstract
Abstract
Background
Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language Processing (NLP) techniques could provide a data-driven, hospital-independent solution to indicate points for quality improvement.
Methods
This retrospective study used routinely collected patient experience data from two hospitals. A data-driven NLP approach was used. Free-text responses were categorized into topics, subtopics (i.e. n-grams) and labelled with a sentiment score. The indicator ‘impact’, combining sentiment and frequency, was calculated to reveal topics to improve, monitor or celebrate. The topic modelling architecture was tested on data from a second hospital to examine whether the architecture is transferable to another hospital.
Results
A total of 38,664 survey responses from the first hospital resulted in 127 topics and 294 n-grams. The indicator ‘impact’ revealed n-grams to celebrate (15.3%), improve (8.8%), and monitor (16.7%). For hospital 2, a similar percentage of free-text responses could be labelled with a topic and n-grams. Between-hospitals, most topics (69.7%) were similar, but 32.2% of topics for hospital 1 and 29.0% of topics for hospital 2 were unique.
Conclusions
In both hospitals, NLP techniques could be used to categorize patient experience free-text responses into topics, sentiment labels and to define priorities for improvement. The model’s architecture was shown to be hospital-specific as it was able to discover new topics for the second hospital. These methods should be considered for future patient experience analyses to make better use of this valuable source of information.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference37 articles.
1. Hamming, J. F., H. Boosman, and P. J. de Mheen Marang-van. "The Association Between Complications, Incidents, and Patient Experience: Retrospective Linkage of Routine Patient Experience Surveys and Safety Data." Journal of patient safety (2019).
2. Cunningham M, Wells M. Qualitative analysis of 6961 free-text comments from the first National Cancer Patient Experience Survey in Scotland. BMJ Open. 2017;7(6):e015726.
3. Blei DM, McAuliffe JD. Supervised topic models; 2010.
4. Li S. Topic modeling and Latent Dirichlet Allocation (LDA) in Python; 2018.
5. Abirami AM, Askarunisa A. Sentiment analysis model to emphasize the impact of online reviews in Healthcare industry, vol. 41; 2017.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献