Prediction of carbapenem-resistant gram-negative bacterial bloodstream infection in intensive care unit based on machine learning

Author:

Liang Qiqiang,Ding Shuo,Chen Juan,Chen Xinyi,Xu Yongshan,Xu Zhijiang,Huang ManORCID

Abstract

Abstract Background Predicting whether Carbapenem-Resistant Gram-Negative Bacterial (CRGNB) cause bloodstream infection when giving advice may guide the use of antibiotics because it takes 2–5 days conventionally to return the results from doctor's order. Methods It is a regional multi-center retrospective study in which patients with suspected bloodstream infections were divided into a positive and negative culture group. According to the positive results, patients were divided into the CRGNB group and other groups. We used the machine learning algorithm to predict whether the blood culture was positive and whether the pathogen was CRGNB once giving the order of blood culture. Results There were 952 patients with positive blood cultures, 418 patients in the CRGNB group, 534 in the non-CRGNB group, and 1422 with negative blood cultures. Mechanical ventilation, invasive catheterization, and carbapenem use history were the main high-risk factors for CRGNB bloodstream infection. The random forest model has the best prediction ability, with AUROC being 0.86, followed by the XGBoost prediction model in bloodstream infection prediction. In the CRGNB prediction model analysis, the SVM and random forest model have higher area under the receiver operating characteristic curves, which are 0.88 and 0.87, respectively. Conclusions The machine learning algorithm can accurately predict the occurrence of ICU-acquired bloodstream infection and identify whether CRGNB causes it once giving the order of blood culture.

Funder

Young Innovative Talents Support Program in the Health Department of Zhejiang Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3