Clinical connectivity map for drug repurposing: using laboratory results to bridge drugs and diseases

Author:

Wen Qianlong,Liu Ruoqi,Zhang PingORCID

Abstract

Abstract Background Drug repurposing, the process of identifying additional therapeutic uses for existing drugs, has attracted increasing attention from both the pharmaceutical industry and the research community. Many existing computational drug repurposing methods rely on preclinical data (e.g., chemical structures, drug targets), resulting in translational problems for clinical trials. Results In this study, we propose a novel framework based on clinical connectivity mapping for drug repurposing to analyze therapeutic effects of drugs on diseases. We firstly establish clinical drug effect vectors (i.e., drug-laboratory results associations) by applying a continuous self-controlled case series model on a longitudinal electronic health record data, then establish clinical disease sign vectors (i.e., disease-laboratory results associations) by applying a Wilcoxon rank sum test on a large-scale national survey data. Eventually, a repurposing possibility score for each drug-disease pair is computed by applying a dot product-based scoring function on clinical disease sign vectors and clinical drug effect vectors. During the experiment, we comprehensively evaluate 392 drugs for 6 important chronic diseases (include asthma, coronary heart disease, congestive heart failure, heart attack, type 2 diabetes, and stroke). The experiment results not only reflect known associations between diseases and drugs, but also include some hidden drug-disease associations. The code for this paper is available at: https://github.com/HoytWen/CCMDR Conclusions The proposed clinical connectivity map framework uses laboratory results found from electronic clinical information to bridge drugs and diseases, which make their relations explainable and has better translational power than existing computational methods. Experimental results demonstrate the effectiveness of our proposed framework, further case analysis also proves our method can be used to repurposing existing drugs opportunities.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3