Surrogate endpoint evaluation using data from one large global randomized controlled trial

Author:

Geybels Milan,Wolthers Benjamin Ole,Kreiner Frederik FlindtORCID,Rasmussen Søren,Bauer Robert

Abstract

Abstract Background Robust identification of surrogate endpoints can help accelerate the development of pharmacotherapies for diseases traditionally evaluated using true endpoints associated with prolonged follow-up. The meta-analysis-based surrogate endpoint evaluation (SEE) integrates data from multiple, usually smaller, trials to statistically confirm a surrogate endpoint as a robust proxy for the true endpoint. To test the applicability of SEE when only a single, larger trial is available, we analysed the cardiovascular (CV) survival endpoint from the large multinational trial LEADER (9340 subjects) that confirmed the CV safety of a diabetes drug (liraglutide). We evaluated if using country as a trial unit adequately facilitated the meta-analysis and calculation of R2 by country group. Methods Data were grouped by country, ensuring at least 30 CV deaths (497 in total) in each of the nine resulting by-country groups. In a two-step SEE on the grouped dataset, we first fitted the group-specific Cox proportional hazard models; next, on the trial-level, we regressed the estimated hazard ratio (HR; liraglutide vs placebo) of the true endpoints (CV death: 497 events, or all-cause death: 828 events) on the HR of the surrogate endpoint (major CV adverse event [MACE]: 1302 events) and derived the group-specific R2 and its 95% confidence interval (CI). Results Group-level surrogacy of MACE was supported for CV death but not for all-cause death, with $${\text{R}}_{{{\text{group}}}}^{2}$$ R group 2 values of 0.85 [0.63;1.00]95% CI and 0.23 [0.00;0.67]95% CI, respectively. Sensitivity analyses using different grouping approaches (e.g. grouping by region) corroborated the robustness of the conclusions as well as the appropriateness of the data-grouping approaches. Conclusions We derived a specific grouping approach to successfully apply SEE on data from a single trial. This may allow for the statistically robust identification and validation of surrogate endpoints based on the abundance of large monolithic outcome trials conducted as part of drug development programmes in, for example, diabetes.

Funder

Novo Nordisk A/S

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3