Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review

Author:

Nickson DavidORCID,Meyer CarolineORCID,Walasek LukaszORCID,Toro CarlaORCID

Abstract

Abstract Background Depression is one of the most significant health conditions in personal, social, and economic impact. The aim of this review is to summarize existing literature in which machine learning methods have been used in combination with Electronic Health Records for prediction of depression. Methods Systematic literature searches were conducted within arXiv, PubMed, PsycINFO, Science Direct, SCOPUS and Web of Science electronic databases. Searches were restricted to information published after 2010 (from 1st January 2011 onwards) and were updated prior to the final synthesis of data (27th January 2022). Results Following the PRISMA process, the initial 744 studies were reduced to 19 eligible for detailed evaluation. Data extraction identified machine learning methods used, types of predictors used, the definition of depression, classification performance achieved, sample size, and benchmarks used. Area Under the Curve (AUC) values more than 0.9 were claimed, though the average was around 0.8. Regression methods proved as effective as more developed machine learning techniques. Limitations The categorization, definition, and identification of the numbers of predictors used within models was sometimes difficult to establish, Studies were largely Western Educated Industrialised, Rich, Democratic (WEIRD) in demography. Conclusion This review supports the potential use of machine learning techniques with Electronic Health Records for the prediction of depression. All the selected studies used clinically based, though sometimes broad, definitions of depression as their classification criteria. The reported performance of the studies was comparable to or even better than that found in primary care. There are concerns with generalizability and interpretability.

Funder

Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership Award

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3