Predicting miRNA-disease associations via layer attention graph convolutional network model

Author:

Han Han,Zhu Rong,Liu Jin-Xing,Dai Ling-Yun

Abstract

Abstract Background MiRNA is a class of non-coding single-stranded RNA molecules with a length of approximately 22 nucleotides encoded by endogenous genes, which can regulate the expression of other genes. Therefore, it is very important to predict the associations between miRNA and disease. Predecessors developed a new prediction method of drug-disease association, and it achieved good results. Methods In this paper, we introduced the method of LAGCN to identify potential miRNA-disease associations. First, we integrate three associations into a heterogeneous network, such as the known miRNA-disease association, miRNA-miRNA similarities and disease-disease similarities, next we apply graph convolution network to learn the embedding of miRNA and disease. We use an attention mechanism to combine embedding from multiple convolution layers. Unobserved miRNA-disease associations are scored based on integrated embedding. Results After fivefold cross-validations, the value of AUC is reached 0.9091, which is higher than other prediction methods and baseline methods. Conclusions In this paper, we introduced the method of LAGCN to identify potential miRNA-disease associations. LAGCN has achieved good performance in predicting miRNA-disease associations, and it is superior to other association prediction methods and baseline methods.

Funder

the Shandong Social Science Planning Fund Program

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference22 articles.

1. Li L, Gao Z, Zheng CH, Wang Y, Wang YT, Ni JC. SNFIMCMDA: similarity network fusion and inductive matrix completion for miRNA-disease association prediction. Front Cell Dev Biol. 2021;9:39.

2. Wang L, Zhong C. Prediction of miRNA-disease association using deep collaborative filtering. Biomed Res Int 2021;2021.

3. Chen P, Wang D, Chen H, Zhou Z, He X. The nonessentiality of essential genes in yeast provides therapeutic insights into a human disease. Genome Res. 2016;26(10):1355–62.

4. Han K, Xuan P, Ding J, Zhao ZJ, Hui L, Zhong YL. Prediction of disease-related microRNAs by incorporating functional similarity and common association information. Genet Mol Res. 2014;13(1):2009–19.

5. Wu H-Y, Xia S, Liu A-G, Wei M-D, Chen Z-B, Li Y-X, He Y, Liao M-J, Hu Q-P, Pan S-L. Upregulation of miR-132-3p in cholangiocarcinoma tissues: a study based on RT-qPCR, The Cancer Genome Atlas miRNA sequencing, Gene Expression Omnibus microarray data and bioinformatics analyses. Mol Med Rep. 2019;20(6):5002–20.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3