Comparison of decision tree with common machine learning models for prediction of biguanide and sulfonylurea poisoning in the United States: an analysis of the National Poison Data System

Author:

Mehrpour OmidORCID,Saeedi FarhadORCID,Nakhaee SamanehORCID,Tavakkoli Khomeini Farbod,Hadianfar Ali,Amirabadizadeh AlirezaORCID,Hoyte ChristopherORCID

Abstract

Abstract Background Biguanides and sulfonylurea are two classes of anti-diabetic medications that have commonly been prescribed all around the world. Diagnosis of biguanide and sulfonylurea exposures is based on history taking and physical examination; thus, physicians might misdiagnose these two different clinical settings. We aimed to conduct a study to develop a model based on decision tree analysis to help physicians better diagnose these poisoning cases. Methods The National Poison Data System was used for this six-year retrospective cohort study.The decision tree model, common machine learning models multi layers perceptron, stochastic gradient descent (SGD), Adaboosting classiefier, linear support vector machine and ensembling methods including bagging, voting and stacking methods were used. The confusion matrix, precision, recall, specificity, f1-score, and accuracy were reported to evaluate the model’s performance. Results Of 6183 participants, 3336 patients (54.0%) were identified as biguanides exposures, and the remaining were those with sulfonylureas exposures. The decision tree model showed that the most important clinical findings defining biguanide and sulfonylurea exposures were hypoglycemia, abdominal pain, acidosis, diaphoresis, tremor, vomiting, diarrhea, age, and reasons for exposure. The specificity, precision, recall, f1-score, and accuracy of all models were greater than 86%, 89%, 88%, and 88%, respectively. The lowest values belong to SGD model. The decision tree model has a sensitivity (recall) of 93.3%, specificity of 92.8%, precision of 93.4%, f1_score of 93.3%, and accuracy of 93.3%. Conclusion Our results indicated that machine learning methods including decision tree and ensembling methods provide a precise prediction model to diagnose biguanides and sulfonylureas exposure.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3