Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening

Author:

Penfold Robert B.ORCID,Carrell David S.,Cronkite David J.,Pabiniak Chester,Dodd Tammy,Glass Ashley MH,Johnson Eric,Thompson Ella,Arrighi H. Michael,Stang Paul E.

Abstract

Abstract Background Patients and their loved ones often report symptoms or complaints of cognitive decline that clinicians note in free clinical text, but no structured screening or diagnostic data are recorded. These symptoms/complaints may be signals that predict who will go on to be diagnosed with mild cognitive impairment (MCI) and ultimately develop Alzheimer’s Disease or related dementias. Our objective was to develop a natural language processing system and prediction model for identification of MCI from clinical text in the absence of screening or other structured diagnostic information. Methods There were two populations of patients: 1794 participants in the Adult Changes in Thought (ACT) study and 2391 patients in the general population of Kaiser Permanente Washington. All individuals had standardized cognitive assessment scores. We excluded patients with a diagnosis of Alzheimer’s Disease, Dementia or use of donepezil. We manually annotated 10,391 clinic notes to train the NLP model. Standard Python code was used to extract phrases from notes and map each phrase to a cognitive functioning concept. Concepts derived from the NLP system were used to predict future MCI. The prediction model was trained on the ACT cohort and 60% of the general population cohort with 40% withheld for validation. We used a least absolute shrinkage and selection operator logistic regression approach (LASSO) to fit a prediction model with MCI as the prediction target. Using the predicted case status from the LASSO model and known MCI from standardized scores, we constructed receiver operating curves to measure model performance. Results Chart abstraction identified 42 MCI concepts. Prediction model performance in the validation data set was modest with an area under the curve of 0.67. Setting the cutoff for correct classification at 0.60, the classifier yielded sensitivity of 1.7%, specificity of 99.7%, PPV of 70% and NPV of 70.5% in the validation cohort. Discussion and conclusion Although the sensitivity of the machine learning model was poor, negative predictive value was high, an important characteristic of models used for population-based screening. While an AUC of 0.67 is generally considered moderate performance, it is also comparable to several tests that are widely used in clinical practice.

Funder

Janssen Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3