A framework for validating AI in precision medicine: considerations from the European ITFoC consortium

Author:

Tsopra RosyORCID,Fernandez Xose,Luchinat Claudio,Alberghina Lilia,Lehrach Hans,Vanoni Marco,Dreher Felix,Sezerman O.Ugur,Cuggia Marc,de Tayrac Marie,Miklasevics Edvins,Itu Lucian Mihai,Geanta Marius,Ogilvie Lesley,Godey Florence,Boldisor Cristian Nicolae,Campillo-Gimenez Boris,Cioroboiu Cosmina,Ciusdel Costin Florian,Coman Simona,Hijano Cubelos Oliver,Itu Alina,Lange Bodo,Le Gallo Matthieu,Lespagnol Alexandra,Mauri Giancarlo,Soykam H.Okan,Rance Bastien,Turano Paola,Tenori Leonardo,Vignoli Alessia,Wierling Christoph,Benhabiles Nora,Burgun Anita

Abstract

Abstract Background Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. Methods The European “ITFoC (Information Technology for the Future Of Cancer)” consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. Results This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the “ITFoC Challenge”. This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. Conclusions The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.

Funder

This work was supported by the ITFoC project (Information Technology for the Future of Cancer) – FLAG-ERA support.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3