A comprehensive framework to estimate the frequency, duration, and risk factors for diagnostic delays using bootstrapping-based simulation methods

Author:

Miller Aaron C,Cavanaugh Joseph E,Arakkal Alan T,Koeneman Scott H,Polgreen Philip M

Abstract

Abstract Background The incidence of diagnostic delays is unknown for many diseases and specific healthcare settings. Many existing methods to identify diagnostic delays are resource intensive or difficult to apply to different diseases or settings. Administrative and other real-world data sources may offer the ability to better identify and study diagnostic delays for a range of diseases. Methods We propose a comprehensive framework to estimate the frequency of missed diagnostic opportunities for a given disease using real-world longitudinal data sources. We provide a conceptual model of the disease-diagnostic, data-generating process. We then propose a bootstrapping method to estimate measures of the frequency of missed diagnostic opportunities and duration of delays. This approach identifies diagnostic opportunities based on signs and symptoms occurring prior to an initial diagnosis, while accounting for expected patterns of healthcare that may appear as coincidental symptoms. Three different bootstrapping algorithms are described along with estimation procedures to implement the resampling. Finally, we apply our approach to the diseases of tuberculosis, acute myocardial infarction, and stroke to estimate the frequency and duration of diagnostic delays for these diseases. Results Using the IBM MarketScan Research databases from 2001 to 2017, we identified 2,073 cases of tuberculosis, 359,625 cases of AMI, and 367,768 cases of stroke. Depending on the simulation approach that was used, we estimated that 6.9–8.3% of patients with stroke, 16.0-21.3% of patients with AMI and 63.9–82.3% of patients with tuberculosis experienced a missed diagnostic opportunity. Similarly, we estimated that, on average, diagnostic delays lasted 6.7–7.6 days for stroke, 6.7–8.2 days for AMI, and 34.3–44.5 days for tuberculosis. Estimates for each of these measures was consistent with prior literature; however, specific estimates varied across the different simulation algorithms considered. Conclusions Our approach can be easily applied to study diagnostic delays using longitudinal administrative data sources. Moreover, this general approach can be customized to fit a range of diseases to account for specific clinical characteristics of a given disease. We summarize how the choice of simulation algorithm may impact the resulting estimates and provide guidance on the statistical considerations for applying our approach to future studies.

Funder

Agency for Healthcare Research and Quality

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three cases of diagnostic delay of type A acute aortic dissection;The Egyptian Heart Journal;2024-01-29

2. Diagnostic windows in non-neoplastic diseases: a systematic review;British Journal of General Practice;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3