CERC: an interactive content extraction, recognition, and construction tool for clinical and biomedical text

Author:

Lee Eva K.,Uppal Karan

Abstract

Abstract Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC (https://newton.isye.gatech.edu/CERC1/), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3