Natural language processing for populating lung cancer clinical research data

Author:

Wang Liwei,Luo Lei,Wang Yanshan,Wampfler Jason,Yang Ping,Liu Hongfang

Abstract

Abstract Background Lung cancer is the second most common cancer for men and women; the wide adoption of electronic health records (EHRs) offers a potential to accelerate cohort-related epidemiological studies using informatics approaches. Since manual extraction from large volumes of text materials is time consuming and labor intensive, some efforts have emerged to automatically extract information from text for lung cancer patients using natural language processing (NLP), an artificial intelligence technique. Methods In this study, using an existing cohort of 2311 lung cancer patients with information about stage, histology, tumor grade, and therapies (chemotherapy, radiotherapy and surgery) manually ascertained, we developed and evaluated an NLP system to extract information on these variables automatically for the same patients from clinical narratives including clinical notes, pathology reports and surgery reports. Results Evaluation showed promising results with the recalls for stage, histology, tumor grade, and therapies achieving 89, 98, 78, and 100% respectively and the precisions were 70, 88, 90, and 100% respectively. Conclusion This study demonstrated the feasibility and accuracy of automatically extracting pre-defined information from clinical narratives for lung cancer research.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference21 articles.

1. American Cancer Society (ACS).. Cancer Facts & Figures 2017 [https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html] Access date: 25-Apr-2019.

2. Yang P. Epidemiology of lung cancer prognosis: quantity and quality of life. In: Cancer Epidemiology: Humana Press; 2009. p. 469–86.

3. Barletta JA, Yeap BY, Chirieac LR. Prognostic significance of grading in lung adenocarcinoma. Cancer. 2010;116(3):659–69.

4. Besse B, Ropert S, Soria J. Targeted therapies in lung cancer. Ann Oncol. 2007;18(suppl_9):ix135–42.

5. Bie F, Qu X, Yang X, Pang Z, Yang Y, Liu S, Dong W, Du J. Appropriate surgical modalities for stages T2a and T2b in the eighth TNM classification of lung cancer. Sci Rep. 2017;7(1):13050.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3