Author:
Seveso Andrea,Campagner Andrea,Ciucci Davide,Cabitza Federico
Abstract
Abstract
Background
Despite the vagueness and uncertainty that is intrinsic in any medical act, interpretation and decision (including acts of data reporting and representation of relevant medical conditions), still little research has focused on how to explicitly take this uncertainty into account. In this paper, we focus on the representation of a general and wide-spread medical terminology, which is grounded on a traditional and well-established convention, to represent severity of health conditions (for instance, pain, visible signs), ranging from Absent to Extreme. Specifically, we will study how both potential patients and doctors perceive the different levels of the terminology in both quantitative and qualitative terms, and if the embedded user knowledge could improve the representation of ordinal values in the construction of machine learning models.
Methods
To this aim, we conducted a questionnaire-based research study involving a relatively large sample of 1,152 potential patients and 31 clinicians to represent numerically the perceived meaning of standard and widely-applied labels to describe health conditions. Using these collected values, we then present and discuss different possible fuzzy-set based representations that address the vagueness of medical interpretation by taking into account the perceptions of domain experts. We also apply the findings of this user study to evaluate the impact of different encodings on the predictive performance of common machine learning models in regard to a real-world medical prognostic task.
Results
We found significant differences in the perception of pain levels between the two user groups. We also show that the proposed encodings can improve the performances of specific classes of models, and discuss when this is the case.
Conclusions
In perspective, our hope is that the proposed techniques for ordinal scale representation and ordinal encoding may be useful to the research community, and also that our methodology will be applied to other widely used ordinal scales for improving validity of datasets and bettering the results of machine learning tasks.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference56 articles.
1. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115.
2. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Cuadros J, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc. 2016; 316(22):2402–10.
3. Cabitza F, Campagner A, Ciucci D. New frontiers in explainable AI: Understanding the GI to interpret the GO LNCS, volume 11713. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction. Cham: Springer: 2019. p. 27–47.
4. Fox RC. Medical uncertainty revisited. Handb Soc Stud Health Med. 2000; 409:425.
5. Abbod MF, von Keyserlingk DG, Linkens DA, Mahfouf M. Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy Sets Syst. 2001; 120(2):331–49.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献