Author:
Li Wei,Min Xin,Ye Panpan,Xie Weidong,Zhao Dazhe
Abstract
Abstract
Background
In recent years, the discovery of clinical pathways (CPs) from electronic medical records (EMRs) data has received increasing attention because it can directly support clinical doctors with explicit treatment knowledge, which is one of the key challenges in the development of intelligent healthcare services. However, the existing work has focused on topic probabilistic models, which usually produce treatment patterns with similar treatment activities, and such discovered treatment patterns do not take into account the temporal process of patient treatment which does not meet the needs of practical medical applications.
Methods
Based on the assumption that CPs can be derived from the data of EMRs which usually record the treatment process of patients, this paper proposes a new CPs mining method from EMRs, an extended form of the traditional topic model - the temporal topic model (TTM). The method can capture the treatment topics and the corresponding treatment timestamps for each treatment day.
Results
Experimental research conducted on a real-world dataset of patients’ hospitalization processes, and the achieved results demonstrate the applicability and usefulness of the proposed methodology for CPs mining. Compared to existing benchmarks, our model shows significant improvement and robustness.
Conclusion
Our TTM provides a more competitive way to mine potential CPs considering the temporal features of the EMR data, providing a very prospective tool to support clinical diagnostic decisions.
Funder
National Key R &D Program of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献