AEDNav: indoor navigation for locating automated external defibrillator

Author:

Rao GauravORCID,Mago Vijay,Lingras Pawan,Savage David W.

Abstract

Abstract Background In a sudden cardiac arrest, starting CPR and applying an AED immediately are the two highest resuscitation priorities. Many existing mobile applications have been developed to assist users in locating a nearby AED. However, these applications do not provide indoor navigation to the AED location. The time required to locate an AED inside a building due to a lack of indoor navigation systems will reduce the patient’s chance of survival. The existing indoor navigation solutions either require special hardware, a large dataset or a significant amount of initial work. These requirements make these systems not viable for implementation on a large-scale. Methods The proposed system collects Wi-Fi information from the existing devices and the path’s magnetic information using a smartphone to guide the user from a starting point to an AED. The information collected is processed using four techniques: turn detection method, Magnetic data pattern matching method, Wi-Fi fingerprinting method and Closest Wi-Fi location method to estimate user location. The user location estimations from all four techniques are further processed to determine the user’s location on the path, which is then used to guide the user to the AED location. Results The four techniques used in the proposed system Turn detection, Magnetic data pattern matching, Closest Wi-Fi location and Wi-Fi fingerprinting can individually achieve the accuracy of 80% with the error distance ± 9.4 m, ± 2.4 m, ± 4.6 m, and ± 4.6 m respectively. These four techniques, applied individually, may not always provide stable results. Combining these techniques results in a robust system with an overall accuracy of 80% with an error distance of ± 2.74 m. In comparison, the proposed system’s accuracy is higher than the existing systems that use Wi-Fi and magnetic data. Conclusion This research proposes a novel approach that requires no special hardware, large scale data or significant initial work to provide indoor navigation. The proposed system AEDNav can achieve an accuracy similar to the existing indoor navigation systems. Implementing this indoor navigation system could reduce the time to locate an AED and ultimately increase patient survival during sudden cardiac arrest.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Mitacs

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference61 articles.

1. U.S. National Library of Medicine. MedlinePlus: cardiac arrest. https://medlineplus.gov/cardiacarrest.html. Last accessed 25 Oct 2018.

2. American Heart Association. What is CPR? https://cpr.heart.org/AHAECC/CPRAndECC/AboutCPRECC/WhatIsCPR/UCM_499896_What-is-CPR.jsp. Last accessed 24 Oct 2018.

3. American Heart Association. Emergency treatment of cardiac arrest. https://www.heart.org/en/health-topics/cardiac-arrest/emergency-treatment-of-cardiac-arrest. Last Accessed 15 Jan 2019.

4. American Heart Association. Heart disease and stroke statistics. https://cpr.heart.org/AHAECC/CPRAndECC/ResuscitationScience/UCM_477263_AHA-Cardiac-Arrest-Statistics.jsp. Last accessed 24 Oct 2018.

5. Rea TD, Eisenberg MS, Sinibaldi G, White RD. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States. Resuscitation. 2004;63(1):17–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3