Computational Barthel Index: an automated tool for assessing and predicting activities of daily living among nursing home patients

Author:

Wojtusiak JanuszORCID,Asadzadehzanjani Negin,Levy Cari,Alemi Farrokh,Williams Allison E.

Abstract

Abstract Background Assessment of functional ability, including activities of daily living (ADLs), is a manual process completed by skilled health professionals. In the presented research, an automated decision support tool, the Computational Barthel Index Tool (CBIT), was constructed that can automatically assess and predict probabilities of current and future ADLs based on patients’ medical history. Methods The data used to construct the tool include the demographic information, inpatient and outpatient diagnosis codes, and reported disabilities of 181,213 residents of the Department of Veterans Affairs’ (VA) Community Living Centers. Supervised machine learning methods were applied to construct the CBIT. Temporal information about times from the first and the most recent occurrence of diagnoses was encoded. Ten-fold cross-validation was used to tune hyperparameters, and independent test sets were used to evaluate models using AUC, accuracy, recall and precision. Random forest achieved the best model quality. Models were calibrated using isotonic regression. Results The unabridged version of CBIT uses 578 patient characteristics and achieved average AUC of 0.94 (0.93–0.95), accuracy of 0.90 (0.89–0.91), precision of 0.91 (0.89–0.92), and recall of 0.90 (0.84–0.95) when re-evaluating patients. CBIT is also capable of predicting ADLs up to one year ahead, with accuracy decreasing over time, giving average AUC of 0.77 (0.73–0.79), accuracy of 0.73 (0.69–0.80), precision of 0.74 (0.66–0.81), and recall of 0.69 (0.34–0.96). A simplified version of CBIT with 50 top patient characteristics reached performance that does not significantly differ from full CBIT. Conclusion Discharge planners, disability application reviewers and clinicians evaluating comparative effectiveness of treatments can use CBIT to assess and predict information on functional status of patients.

Funder

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3