Author:
Wu Xiaoli,Wu Hao,Miao Shouliang,Cao Guoquan,Su Huang,Pan Jie,Xu Yilun
Abstract
Abstract
Background
Precise prediction of esophageal squamous cell carcinoma (ESCC) invasion depth is crucial not only for optimizing treatment plans but also for reducing the need for invasive procedures, consequently lowering complications and costs. Despite this, current techniques, which can be invasive and costly, struggle with achieving the necessary precision, highlighting a pressing need for more effective, non-invasive alternatives.
Method
We developed ResoLSTM-Depth, a deep learning model to distinguish ESCC stages T1-T2 from T3-T4. It integrates ResNet-18 and Long Short-Term Memory (LSTM) networks, leveraging their strengths in spatial and sequential data processing. This method uses arterial phase CT scans from ESCC patients. The dataset was meticulously segmented by an experienced radiologist for effective training and validation.
Results
Upon performing five-fold cross-validation, the ResoLSTM-Depth model exhibited commendable performance with an accuracy of 0.857, an AUC of 0.901, a sensitivity of 0.884, and a specificity of 0.828. These results were superior to the ResNet-18 model alone, where the average accuracy is 0.824 and the AUC is 0.879. Attention maps further highlighted influential features for depth prediction, enhancing model interpretability.
Conclusion
ResoLSTM-Depth is a promising tool for ESCC invasion depth prediction. It offers potential for improvement in the staging and therapeutic planning of ESCC.
Funder
Wenzhou Municipal Science and Technology Commission Major Projects Funds
The Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献